Standing waves appear when a
length of line is excited at a frequency for which the electrical line length
is a significant part of an electrical wavelength. They result from the
constructive and destructive interference of forward and reflected waves on the
line.
The behavior of the line can be
determined by solving the applicable differential equations relating the line
parameters to the exciting frequency. The solution of the equations for a line
with losses is rather complex and adds little to the practical considerations,
so the lossless line will be analyzed instead.
In the lossless line, L is the series inductance per unit
length, and C is the shunt capacitance. If a
differential length, dx, is considered, the inductance
for that length is L dx, and the voltage in that length
is e= Ldx(di/dt). Since e= (de/dx)dx, the equation can be written as dx (de/dx) = –L dx(di/dt ).
Fortunately, the computer offers
an easier method of analysis by numerical integration, and line losses can be incorporated
with relative ease. The difference equations can be solved by simple Euler
integration, so the whole process is not nearly as daunting as in earlier
years.
These equations allow numerical
solutions for the voltages and currents on the line as functions of distance
and time. Although it may not be immediately apparent, these difference
equations, in the limit, replicate the differential equations.
the line has a surge, or
characteristic, impedance defined as Z0= (L/C)^1/2 and, second, a velocity of propagation v= 1/(LC)1/2.
The characteristic impedance
defines the relationship between the line and its attached load, and the
velocity of propagation defines the speed of signal transmission along the line
and consequently its electrical length. The electrical length of the line, in
terms of wavelengths for any given exciting frequency, is ëp/ëe = v/c, where
ëp is the physical line length,
ëe is the exciting frequency wavelength in free
space,
v is the velocity of propagation,
and
c is the speed of light.
The parameters vary widely among
the various types of transmission lines and cables typically encountered in
power electronics. The overhead line has a high series inductance and
relatively low shunt capacitance that leads to a high surge impedance. It also
has a relatively high velocity of propagation because of the low capacitance.
No comments:
Post a Comment